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Abstract

In this paper, we consider the transmission of classical information through
a class of quantum channels with long-term memory, which are convex
combinations of memoryless channels. Hence, the memory of such channels
can be considered to be given by a Markov chain which is aperiodic but not
irreducible. We prove the coding theorem and weak converse for this class
of channels. The main techniques that we employ are a quantum version of
Feinstein’s fundamental lemma (Feinstein A 1954 IRE Trans. PGIT 4 2-22,
Khinchin A T 1957 Mathematical Foundations of Information Theory: II. On
the Fundamental Theorems of Information Theory (New York: Dover) chapter
IV) and a generalization of Helstrom’s theorem (Helstrom C W 1976 Quantum
detection and estimation theory Mathematics in Science and Engineering vol
123 (London: Academic)).

PACS number: 03.67.—a

1. Introduction

The biggest hurdle in the path of efficient information transmission is the presence of noise,
in both classical and quantum channels. This noise causes a distortion of the information
sent through the channel. Error-correcting codes are used to overcome this problem. Instead
of transmitting the original messages, they are encoded into codewords, which are then sent
through the channel. Information transmission is said to be reliable if the probability of error,
in decoding the output of the channel, vanishes asymptotically in the number of uses of the
channel (see e.g. [4] and [16]). The aim is to achieve reliable transmission, whilst optimizing
the rate, i.e. the ratio of the size of the message to its corresponding codeword. The optimal
rate of reliable transmission is referred to as the capacity of the channel.
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Shannon, in his noisy channel coding theorem [21], obtained an explicit expression for
the channel capacity of discrete, memoryless?, classical channels. The first rigorous proof of
this fundamental theorem was provided by Feinstein [7]. He used a packing argument (see
e.g. [13]) to find a lower bound to the maximal number of codewords that can be sent through
the channel reliably, i.e. with an arbitrarily low probability of error. More precisely, he proved
that for any given 6 > 0, and sufficiently large number, 7, of uses of a memoryless classical
channel, the lower bound to the maximal number, N,, of codewords that can be transmitted
through the channel reliably is given by

N, > 21HX1)=8),

Here H(X:Y) is the mutual information of the random variables X and Y, corresponding to
the input and the output of the channel, respectively. We refer to this result as Feinstein’s
fundamental lemma, following Khinchin [13]. It implies that for a real number R < C, where
C = max H(X:Y) (the maximum being taken over all possible input distributions), M,, < 2"F
classical messages can be transmitted through the channel reliably. In other words, any rate
R < C is achievable.

For real world communication channels, the assumption that noise is uncorrelated between
successive uses of a channel cannot be justified. Hence, memory effects need to be taken into
account. This leads us to the consideration of quantum channels with memory. The first
model of such a channel was studied by Macchiavello and Palma [15]. They showed that the
transmission of classical information through two successive uses of a quantum depolarizing
channel, with Markovian-correlated noise, is enhanced by using inputs entangled over the two
uses. An important class of quantum channels with memory consists of the so-called forgetful
channels. The channel studied in [15] falls in this class. Roughly speaking, a forgetful channel
is one for which the output after a large number of successive uses does not depend on the
initial input state. Forgetful channels have been studied by Bowen and Mancini [3] and more
recently by Kretschmann and Werner [14]. In [14], coding theorems for arbitrary forgetful
channels were proved. The proof of the direct channel coding theorem for a class of quantum
channels with Markovian-correlated noise, where the underlying Markov chain was aperiodic
and irreducible, was sketched out in [5]. Recently, Bjelakovi¢ and Boche [2] have proved a
coding theorem for causal ergodic classical-quantum channels with decaying input memory.

The capacities of channels with long-term memory (i.e. channels which are ‘not forgetful”)
had remained an open problem to date. In this paper, we evaluate the classical capacity of a
class of quantum channels with long-term memory. These channels are convex combinations
of memoryless channels. For a channel ® in this class, ® : B(H®") — B(K®") and the
action of ®™ on any state p™ € B(H®") is given as follows:

M
(") =Y nd (o). (1)
i=1

where ®; : B(H) — B(K) (i =1, ..., M) are completely positive, trace-preserving (CPT)
maps and y; > 0, ZZAL y; = 1. Here, H and K denote Hilbert spaces. On using the channel,
an initial random choice is made as to which memoryless channel the successive input states
are transmitted through. A classical version of such a channel was introduced by Jacobs [12]
and studied further by Ahlswede [1], who obtained an expression for its capacity which is

analogous to the one we obtain in theorem 3.1 of section 3.
The memory of the class of channels that we study can be considered to be given by a
Markov chain which is aperiodic but not irreducible. This can be seen as follows. A quantum

3 For such a channel, the noise affecting successive input states is assumed to be perfectly uncorrelated.
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channel (of length 1) with Markovian-correlated noise is a CPT map ®™ : B(H®") — B(K®")
defined as follows:

q)(n)(p(")) = Z Ginlin-y - - - Dinliy Vi (CD[I R--® q)[n)(p(n))’

Iy n

Here (i) g;; denote the elements of the transition matrix of a discrete-time Markov chain
with a finite state space /, (ii) {y;} denotes an invariant distribution of the chain and (iii) for
eachi € I,®; : B(H) — B(K) is a CPT map. Casting our channel (defined by (1)) in
this form yields ¢g;; = §;;. Hence the transition matrix of the Markov chain, in this case,
is the identity matrix. Hence, once a particular branch, i = 1, ..., M, has been chosen, the
successive inputs are sent through this branch. The Markov chain is therefore aperiodic, but not
irreducible. We prove the coding theorem and weak converse for this class of channels. The
main techniques that we employ are a quantum version [5] of Feinstein’s fundamental lemma
[7, 13] and a generalization of Helstrom’s theorem [9]. For a quantum memoryless channel, our
method yields an alternative proof of the Holevo—Schumacher—Westmoreland (HSW) theorem
[11, 20], similar in spirit to the proof in [22]. Our results can be extended to quantum channels
with arbitrary Markovian-correlated noise. The proofs in this case are technically more
involved and will be presented in a subsequent paper.

We start the main body of our paper with some preliminaries in section 2. Our main result
is stated in section 3. For clarity of exposition, we follow this with a proof of the quantum
analogue of Feinstein’s fundamental lemma for memoryless channels in section 4. The proof
of our main result, for a class of quantum channels with long-term memory, is given in
section 5.

2. Preliminaries

Let B(H) denote the algebra of linear operators acting on a finite-dimensional Hilbert space H.
The von Neumann entropy of a state p, i.e. a positive operator of unit trace in B(H), is defined
as S(p) = —Tr plog p, where the logarithm is taken to base 2. A quantum channel is given
by a CPT map & : B(H) — B(K), where H and K are the input and output Hilbert spaces
of the channel, respectively. Let dim H = d and dim K = d’. For any ensemble {p;, p;} of
states p; and probability distributions {p;}, the Holevo x quantity is defined as

xUpi o) =S pini | =D piSio)). 2)
J J

The Holevo capacity of a memoryless quantum channel & is given by
XH(@) = [max x({pj, ®(p)}), 3)

where the maximum is taken over all ensembles {p;, p;} of possible input states p; € B(H)
occurring with probabilities p;. It is known that the maximum in (3) can be achieved by using
an ensemble of pure states, and that it suffices to restrict the maximum to ensembles of at most
d? pure states.

Let us consider the transmission of classical information through successive uses of a
quantum channel ®. Let n uses of the channel be denoted by ®. Suppose Alice has a set
of messages, labelled by the elements of the set M, = {1, 2, ..., M, }, which she would like
to communicate to Bob, using the quantum channel ®. To do this, she encodes each message
into a quantum state of a physical system with Hilbert space H®", which she then sends to Bob
through n uses of the quantum channel. In order to infer the message that Alice communicated
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to him, Bob makes a measurement (described by POVM elements) on the state that he
receives. The encoding and decoding operations, employed to achieve reliable transmission

of information through the channel, together define a quantum error-correcting code (QECC).
(n)
i

a state in B(H®") and each E l.(") is a positive operator acting in X®", such that vaz"l E l.(") < .
Here I, denotes the identity operator in B(KX®"). Defining E(()") =1, - Z;N= | El.(") yields a

resolution of identity in K®". Hence, {E i(") }?ZO defines a POVM. An outputi > 1 would lead

to the inference that the state (or codeword) p."

More precisely, a code C™ of size N, is given by a sequence { p. E l.(") }lN:"l where each :0;(") is

. was transmitted through the channel ON
whereas the output O is interpreted as a failure of any inference. The average probability of
error for the code C™ is given by

Ny

PE(C(”)) o NL Z (1 . Tr((b(n) (pi(ﬂ))E,‘(n)))' (4)

=

If there exists N € N such that for all n > N, there exists a sequence of codes {C(”)};'l":l, of
sizes N, > 2", for which P,(C"™) — 0 as n — oo, then R is said to be an achievable rate.
The capacity of @ is defined as

C(®P) :=supR, 5

where R is an achievable rate. If the codewords ,oi("), i=1,2,..., N,,arerestricted to product
states in B(H®"), the capacity C(®) is referred to as the product state capacity.

3. Main result

In this paper, we study a class of channels with long-term memory defined by (1). Asexplained
in the introduction, the memory of a channel in this class can be considered to be given by a
Markov chain which is aperiodic but not irreducible [17].

Our main result is given by the following theorem.

Theorem 3.1. The product state capacity of a channel ®, with long-term memory, defined
through (1), is given by

c@) = sw [A\" xillps o).

{pj.pj}

where x;({pj, pj}) = x({pj, Pi(pj)}). The supremum is taken over all finite ensembles of
states p; € B(H) with probabilities p;.

Here we use the standard notation /\ to denote the minimum.

The product state capacity can be generalized to give the classical capacity of the channel
® in the usual manner, that is, by considering inputs which are product states over uses of
blocks of n channels, but which may be entangled across different uses within the same block.
The classical capacity Classical(P) 1s obtained in the limit n — oo and is given by

R
Celassical (P) = nll)rrolo ;C(Q( ))- (6)
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4. Analogue of Feinstein’s fundamental lemma for a memoryless quantum channel

In this section, we prove an analogue of Feinstein’s fundamental lemma [7] for a memoryless
quantum channel ®. This is given by theorem 4.1. It provides a lower bound to the maximal
number of codewords that can be reliably sent through &.

The proof of our main result, theorem 3.1, employs a theorem which is a generalization
of theorem 4.1.

Theorem 4.1. Let ® : B(H) — B(K) be a memoryless quantum channel. Given € > 0,

there exists ny € N such that for all n > ng there exist at least N, > 21 (@) =€) product

states ,Z)f"), ...,,Z),(\;ln) € B(H®") and positive operators Ef"), e E,(\',? e B(K®") such that
o EM < 1, and

Tr[ ®®" ([),E"))E,E")] >1—e¢, (7

for each k.
Here x*(®) is the Holevo capacity (3) of the memoryless quantum channel ®.

Before giving the proof of theorem 4.1, let us briefly sketch the idea behind it. The proof

employs the idea of construction of a maximal code. For a given € > 0, starting with an empty
(n)

code, the proof gives a prescription for successively adding codewords p; " and corresponding
POVM elements E;”), j=1,2,..., such that
(n) ._ () g () (@)
e i =1-Tr(E]"®"(p")) <e. (8)

Note that s;m is the probability of error in inferring the jth codeword. This is done until no
more codewords can be added without violating condition (8). The resulting code is maximal.
Let the size of this code be N,. The proof ensures that the number N, is large and provides a
lower bound for it in terms of the Holevo capacity x*(®).

Proof. Let the maximum in (3) be attained for an ensemble {p;, ,oj}]J.:l. Denote
oj =P(p;), 6 = Zj:l pj®(p;) and 6, = ¢®". Since &, is a product state, its eigenvalues
and eigenvectors can be labelled by sequences k = (ky, ..., k,) € J". (]

Choose 6 > 0. We will relate § to € at a later stage. There exists n; € N such that forn > ny,

there is a typical subspace ’Z_'En) of K®", with projection P, such that if &, has a spectral
decomposition

0= &N ©)

k

then

1.
'— log (" + §(5)
108 AL

€
<3 (10)

for all k such that |Wé")) c 7—,in) and

Tr(P,6,) > 1 — 8% (11)
Further define

J
§=Y p;S). (12)
j=1
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Lemma 4.1. Given a sequence j = (ji,..., ja) € J", let P;") be the projection onto the
subspace of K®" spanned by the eigenvectors of o;”) = 0}, ®...® oj, with eigenvalues

)‘5’11)( =1, Ajk such that

I i
'— log 7} + 5| < . (13)

For any § > 0 there exists ny € N such that for n > n»,

E(Tr(o" P[")) > 1 = &%, (14)
where [E denotes the expectation with respect to the probability distribution { pj")} on the
states ,OJ(").

Proof. Define i.i.d. random variables X1, ..., X,, with distribution given by
PTOb(Xi = )"j,k) = pj)‘j,ks (15)
where A x, k =1,2,...,d', are the eigenvalues of ;. By the weak law of large numbers,
J d
— ZlogX — E(log X;) = Zij jklog Ak
j=1 k=1
=— ijS(oj) = -5 (16)

It follows that there exists n, such that for n > n;, the typical set T of sequences of pairs
((j1:k1), -, (jns kn)) such that

1 & ~ €
—Zlog,\j,,k,w <- (17)
n “ 3
i=1
satisfies
n
P(7T™) = > [1ririw >1-6 (18)
(k1) ees Gin ko)) €T =1
Obviously,
(n) () (n)
P > > vl (19)
k=(ky,....k,)
(Grok) s Gin k) ET™
and
E(Tr(o]" P[")) = B(T") > 1 = &% (20)
|
Continuing the proof of the theorem, let N, be the maximal number N for which there
exist product states p(") s ,5](\7) on H®" and positive operators E ;"), el E,(\;’) on /C®" such
that

M) Yo, B < Py,
(i) Tr[s, ")E(”)] >1—e€and
(iii) Tr[a,,E(”)] < 2nIS@) =53¢,

Here 6" = ®®" (p,ﬁ")).
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For any given j € J", define

N, 1/2 N, 1/2
vf“ - <13n -3 E,E’”) I_’HPL.(")I_’n (P,l -3 E,ﬁ")) : (21)

k=1 k=1

Clearly, Vj(") <P, — Z,i\': VE ,E"), and we also have

Lemma 4.2.

Tr(G, V") < 27"8@=5=3el, (22)

Proof. Put Q, = Y " E;. Note that Q, commutes with P,. Using the fact that
PG, P, < 27"S@)=3¢l by (10), we have

Te(6, V(") = Te[6, (P, — Qi)' 2P, P Py (P, — Q)]
= Tr[PnénPn(Pn - Qn)l/ZPj(")(p” - Qn)l/z]
—n[S(&)— el > 1/2 p() /1 1/2
<2 SITe[(Py = Q)PP (P — Q)]
<L 2@ —3eITy(pM) < 2 7NIS@) =55l (23)
~ L ~ ’

where, in the last inequality, we used the standard upper bound on the dimension of the typical
subspace: Tr(P;")) < 2715+5€1 which follows from lemma 4.1. 0

Since N, is maximal, it now follows that
Tr(o/"V,") <1-¢, (24)
and hence

Corollary 4.1.
E(Tro"V"]) <1 -e (25)

Lemma 4.3. For all n > 0, there exists n3 € N such that for all n > ns,
E(Tt[o (”)P P(”)P, )>1-n. (26)

Proof. We write
E(Tr[o;" P, P P.]) = E(Te[o}" P"]) — E(Te[o]" (1, — P)P}"])
— E(Tr[o] (")P P(")(I - P))). (27)

By lemma 4.1, the first term is > 1 — §2 provided n > n,. The last two terms can be bounded
using the Cauchy—Schwarz inequality as follows:

(m) By p) (m\1/2 () (_(m)\1/2
E(Tr[o}" (1, = P)P;"]) = E(Te[(}”) " (1n — PP (0}") 7])

J
< [E(Te[1, - Pn)aﬁw(z — P} (BT (o) 2P (o) )}

(
= {E(T [}”)(1,1—1))])}”2{ (1[0 P])}
( [1()(1 PN}

= (Tr[6u (1, — P]) < 8 (28)

{

{
<{E Tr

(
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by (11) provided n > n;. Analogously,
E(Tr[o” PP (I, = P))]) < (29)
Choosing n3 = n; V n, and 82 + 28 < 1, the result follows. O

Lemma 4.4. Assume n < e Then for n > ns,

Tr [an > E("):| (Tr |:o(") > E("):|> (30)

Proof. Define
0, =P, — (P, — Q)" 31
By the above corollary,
1—e>E{Tr (a@(P - Q/)P?")(P - o)}
—]E{Tr( (n)P P(")P )} IE{ ( (n)Q P(")P)+Tr( (n)P P(")Q )}

+E{ Tr (a;'” anj'” 0,)}. (32)
Since the last term is positive, we have, by lemma 4.3,
E{Tr(o]" 0, P/ P,) +Tx (o] B, P Q})} = € =1 > 211 (33)

On the other hand, using Cauchy—Schwarz for each term, we have
E{Tr(0]" 0, P/ B,) + Tr(0}" P, P 0,
2{E[Tr(0;0," 0, )]}1/2{ [Tr(of" B, P P,) ]} 2

(n) A2 1/2
< 2{E[Tr(o;" O)]} (34)
Thus,

E[Tr(0}"” Q)] = n*. (35)

To complete the proof, we now claim that
0. > (0, (36)
Indeed, on the domain of P,, (36) follows from the inequality 1 — (1 —x)?> > x?for0 < x < 1.
O

To complete the proof of theorem 4.1, we now have by assumption,
Tr[ﬁnE,E")] L 2S@)=5=3€] (37)

for all k = 1,..., N,. On the other hand, choosing n < %e and § < %r/, we have by
lemma 4.4,

Ny
Tr {5,1 > E,(("):| > 92 (38)
k=1
provided n > nj3. It follows that
N, > nzzn[s«r)—S—%e] > on[S(@)—5—¢] (39)

forn > n3andn > —glogn.
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5. A class of channels with long-term memory

We now consider the class of quantum channels with long-term memory, mentioned in the
introduction:

M
" (p™) =Yy dF"(p™), (40)

i=1

where ®; : B(H) - B(K) (i =1, ..., M) are CPT maps and y; > 0, Zf‘il y; = 1.
For an ensemble of states {p;, p;} where p; € B(H), define

Rpsoh = N\ 1y o)), (D)

where x;({p;. p;}) = x ({pj. ®i(p))})-

5.1. Proof of the direct part of theorem 3.1

To prove the direct part of theorem 3.1, i.e. the fact that a rate R < C(®) is achievable, we
employ the quantum analogue of Feinstein’s fundamental lemma for the class of channels
defined by (40). This analogue is given by the following theorem, which we prove in
section 5.1.1.

Theorem 5.1. Given € > 0, there exists ng € N such that for all n > ng there exist

at least N, > 2"C®=9 product states ,ol("), ceey '01(\7”) € B(H®") and positive operators

E{"), e EI(\;’”) € B(K®") such that Z,ivil E,E") < I, and such that for eachk =1, ..., N,

Tr[@® (0")E"] > 1 —e. (42)
Here
M —~
c@) = sw [\ xps D] = sup RAps. i), 3)
{pj.pj} = {pj.pj}

where the supremum is over all finite ensembles of states p; with probabilities p;.

The above theorem implies that a rate R < C(®) is achievable. This can be seen as
follows. Given R < C(®), choose € > 0 such that R < C(®) — €. Then, theorem 5.1
guarantees the existence of codes C™ of size

Nn 2 2n(C(<D)—e) 2 2nR’

with codewords given by product states pj(."), and POVM elements E;."), for which the

probability of error, 8;."), can be made arbitrarily small, for each j € {1,2,..., N,} and

n large enough. Hence, the rate R is achievable.

5.1.1. Proof of theorem 5.1.  Choose an ensemble {p;, ,oj}jj.:1 such that
C(®) < xUpj i} + g€ (44)
Deﬁne O',‘,j = @,‘(,Oj), O'l-('rjl-) = ®f=10i,j,7 51‘ = ij'zl p]ch(p]) = CD,(,(_)) and O_'i(n) = —i®n' Let

I_Jl.("), i =1,..., M, be the orthogonal projections onto the typical subspaces for the states
51'(”) so that, as above,

To(P"6") > 1 — 82 (45)
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for n large enough, and
- - = 1
[)l(”) 61'(”) Pl(n) < 2*”[5(0")*15] . (46)

(n

By lemma 4.1 there also exist typical subspaces with projections P, j) for which

E(Tr(o/}) P))) > 1= & 47

for n large enough.

To distinguish between the different memoryless branches, ®;, of the quantum channel
@, we add a preamble to the input state encoding each message in the set M,,. This is given
by an m-fold tensor product of a suitable state (as described below). Let us first sketch the
idea behind adding such a preamble. Helstrom [9] showed that two states o and o,, occurring
with a priori probabilities y; and y, respectively, can be distinguished, with an asymptotically
vanishing probability of error, if a suitable collective measurement is performed on the m-fold
tensor products o]®’” and of””, for a large enough m € N. The optimal measurement is
projection valued. The relevant projection operators, which we denote by IT* and I1~, are the
orthogonal projections onto the positive and negative eigenspaces of the difference operator
A, = 7/101®m - y262®"’. Here we generalize this result to distinguish between the different
branches ®;. If the preamble is given by a state @®™, then, by using Helstrom’s result, we
can construct a POVM which distinguishes between the output states Ui®” = (D (w))®"
corresponding to the different branches ®;,i = 1,2,..., M. The outcome of this POVM
measurement would in turn serve to determine which branch of the channel is being used for
transmission.

Note that we may assume that all branches ®; are different. Indeed, otherwise we do not
need to distinguish them and can introduce a compound probability for each set of identical
branches. This assumption means that there exist states w; j on H foreachpairl <i < j <M

such that ®; (w; ;) # ®;(w;, ;). Introducing the fidelity of two states as in [16],

F(o,0") = Tro 200172, (48)
we then have

F(®i(w;j), ®j(w; ;) < f <1 (49)

for all pairs (i, j). We now introduce, for any m € Nand 1 < i < j < M, the difference
operators

A" = (@i )" — ¥y (@ (wn )" 0

[

Let I'Ifj be the orthogonal projections onto the eigenspaces of Af.f’}) corresponding to all
non-negative, and all negative eigenvalues, respectively.

Lemma 5.1. Suppose that for a given § > 0,

ITe[[A7]] = i+ vl < 8. (51)
Then
m )
| Te [0} (@i (@1.) "] = 1] < oW (52)
and
m 8
[T [0 (@ @) ™" ] = 1] < 5 (53)

Q,)/j
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Proof. Write A = A{" and [T* = II;",. First note that
Tr{IT*A] = 1 Tr[A & (IT" — [17)A]
= 5 (Tt[A] £ Tr[|A[])

=3 —v) £ 5 TrllA] (54)
so that we have by the assumption
| T[T Al - 4| < 36 (55)
and
| Tr[TT~ Al + y;] < 36. (56)

Now writing 0; = (®;(w; ;))®" and 0; = (P (w;,;))®", we obviously have Tr[I1"0;] > 0,
and on the other hand,

yi Tr[TT 03] = Te[[T- Al + y; Tr{TT 03] < —y; + 38 + y; = 36. (57)
The first result thus follows from IT* + [1~ = [, and Tro; = 1. Similarly,
y; TrlT o] = — Te[ITY Al + y; Tr[ [TV 03] < —y; + 38+, = 16. (58)

O

To compare the outputs of all the different branches of the channel, we define projections
1; on the tensor product space (), ;_ <y K& = K& with L = (%)) as follows:

2
L, ifiy#iandi, #i
l:[i = ® Fi(li,)iz’ where Fl(ll)lz = H:ll if i2 =1 (59)
1<iy <, <M ny, ifi =i

i,is

Note that it follows from the fact that IT; ;T;; = O that the projections I1; are also disjoint:

Introducing the notation
™) — ® wf?r:tz’ 61)
i[ <i2

we now have

Lemma 5.2. Foralli =1,..., M,
lim Tr[[T;®"" (0"")] = 1. (62)

m—0oQ

Proof. Note that forall i < j,

F(ri®i(wi )", v @ (@i )™ = ViV F(@i(w; ), Pi(wi ;)" < f™. (63)
Using the inequalities [16]
Tr(Ay) + Tr(Az) —2F(Ay, Ay) < |A — Azl < Tr(A) +Tr(Ay) (64)

for any two positive operators A; and A,, we find that
| Te(|A7]) = i+ vl <267, (65)
since

Tr(|A]) = 11y @i (@i, )®" — v @ (@i )" |11 (66)

L,
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Using lemma 5.1, we then have

i1<iy

= HTr i, l (I) (a)zl 1) HTI' zzz (D (a)’ ’7))®m]

i <i ir>i
m\ M—1
= (1 — f—) . 67)
Vi
O
We now fix m so large that

Tr [T @8 (0™)] > 1 -6 (68)
foralli = 1,..., M. The product state 0" defined through (61), is used as a preamble to

the input state encoding each message and serves to distinguish between the different branches,
®;,i = 1,2,..., M, of the channel. If ,o(”) € B(H®") is a product state encoding the kth
classical message in the set M,,, then the kth codeword is given by the product state

a)(mL) ® P/En)

Continuing with the proof of theorem 5.1, let N = N (1) be the maximal number of product

states Z)l(”), cee [),(\',1) on H®" (each of which is a tensor product of states in the maximizing
ensemble {p;, p;}7_,) for which there exist positive operators E W EW on &ML @ KB
such that

(i) EY = I ® E{") and Y, E;") < P,
i= l k=1 “k,i i

(i) YL, v Tr [T 02" (™) Tr [@F" (") E{}] > 1 — € and
i) Y0, 3 Tr [, 02" (™) Tr [(@; (p))®" B ] < 27C@—3el,

for p = ZJJ‘=1 pjpj. Foreachi =1,..., M andi: (J1y - -5 Ju) € J", we define, as before
N 12 N 12
V(n) <P(n) Z El?,?) I‘)i(n) Pl(z) I‘)i(n) (pi(n) _ Z ElEf?) ) (69)
k=1 k=1

Clearly Vl(z) <PY -2V E,E'fi). Put
v = Z me V). (70)

This is a candidate for an additional measurement operator, £ ](vil , for Bob with a corresponding

~(n) (n)

input state Py, = 0; i =P @ Py B P, Clearly, condition (i), given above, is satisfied

and we also have

Lemma 5.3.
M
~ 3
Y v T [[F (@) ] Tr [6 V] < 271 3el, (71)
i=1

where a = (®;(p))®".
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Proof. By lemma 4.2, replacing %e by %e in the definition of the typical subspaces, we have

T (5 M)Vow)<:2—ﬂsmn Si—4el _ p—nlxi—jel

for n large enough. Then,

Z Vi TI'[H q)®mL (a)(mL))] TI' (Vl)v(”l) Z Vi Tr (’1) V(")]

i=1

< Z yiz—ﬂ[s(ﬁi)—gi—%é]

i=l1
9—nlX(®)= 3¢
pnC@—gel

NN

where we used the obvious fact that Tr [[T; ®®™" (w"")] < 1.

By maximality of N it now follows that condition (ii) cannot hold, that is,

Zy, Tr [T 02" (™) ] Tr [0 (o <”’)v,<">] <l-—e

for every j, and this yields the following.

Corollary 5.1.
M

> Te [ 02" @) JE(Te [0 (o) V) < 1 - e

i=1
We also need the following lemma.

Lemma 5.4. For all /> 8% + 38,
M
Z Vi Tr [1:[1 q)l@mL (w(mL))] Tr [O'i(,r]l') Pi(n) PI(V;) Pi(n)] -~ 1— n/
i=1 - -
if nis large enough.

Proof. Using lemma 4.3 and (68), we have

M
Z yi Tr [, 08" (02 |E( Tr [Ui(,z)Pi(n)PiEz)Pi(m]) > (=8 =mn),
i=1

provided n > 82 +28. Hence, the result follows.

1

Lemma 5.5. Assume 1’ < 3€ and write

Q(") Z E(”)

Then for n large enough,

M
Yo v T [P (@) [E(Tr[@ (0,”) 0/ ]) >

i=1

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)
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Proof. This is analogous to lemma 4.4. Define
0" = " — (B™ — ™)',
By corollary 5.1,
M

I—e2 ) yTr[MoP" " N)E(Tr [0 (o) V,])
i=1

H q>®mL (a)(mL))] { ( i(,r;) pi(n)Pifz) pi(n))}

|M§

N ZV’ Tr [T ®F"* (™) JE{ Tr (UifrJi)an)/PifE) I_)i(n))

(n) pn) p(n) H@)
+Tr(0i,i‘Pi LN Y )
M

£ T [0 @ ]E| Te (0 01 P O)).

i=1
Since the last term is positive, we have, by lemma 5.4,

Z Vi TI' CD®mL (mL))]E{ Tr (o_i("i) ngn)/Pi(’rji) Pi(n)) +Tr (o_i(,’i) }_)i(n) PI(Q) Ql(n)/)}

>e—n >279.

On the other hand, using the Cauchy—Schwarz inequality for each term, we have

M
>y T @ )BT (off) 0 B B) 4 Tr (0 B P 0]
i=1

1/2
:Z”“ 1,7 (’““>]E[Tr(oif?%QE””fﬂ}
i=1

12
{Z CI)®mL (mL))] E[ Tr (Ui(,z) I_)i(") Pl(z) I_)i("))] }

M

M 172
{Z ;0" (" )] E[ T (,»(,'})(Qf”)’)z)]} :

Thus,
M
>y T [P @) E[ Tr (o) (01))] > n”.
i=1 -
To complete the proof, we remark as before that

0" = (™).

It now follows, as before, that for 1 large enough, N (n) > (1/)22"C(®=iel,
We take the following states as codewords:

pIEmL‘*'”) (mL) ® ~(")

(80)

(81)

(82)

(83)

(84)

(85)

(86)
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For n sufficiently large, we then have
Nopomz = N(n) > (n/)ZZn[C(@)f%e] > mLAmIC(@)—e] (87)
To complete the proof, we need to show that the set E ,E") satisfies (42). But this follows
immediately from condition (ii):

M
Te [0 1) (of" ) EP ] = 3 i Te [0 " (00 © i) B

i=1

I
M=

yi Tr [T 08" (") ] Tr [0 (") E{")]

i,j=1

<
Il

yi Tr [T 02" (™) Tr [0 (") EV] > 1 — €. (88)

WV
.Mg

i=1

5.2. Proof of the converse of theorem 3.1

In this section, we prove that it is impossible for Alice to transmit classical messages reliably
to Bob through the channel ® defined in (40) at a rate R > C(®). This is the weak
converse of theorem 3.1 in the sense that the probability of error does not tend to zero
asymptotically as the length of the code increases, for any code with rate R > C(®). To prove
the weak converse, suppose that Alice encodes messages labelled by @ € M, by product

states p,ft”) = Pg1 ® ... ® Py, in B(H®"). Let the corresponding outputs for the ith branch of
()

the channel be denoted by o, /', i.e.
0 =P (") = 0y ® ... ® 0y, 04 ;= Pila)): (89)
Further define
1
— (n) (n)
0; =-— O, (90)
| M| a;;n ’
and
1 ‘
= S gl O1)
Let Bob’s POVM elements corresponding to the codewords p{" be denoted by E™, o =
1,...,|M,|. We may assume that Alice’s messages are produced uniformly at random from
the set M,,. Then Bob’s average probability of error is given by
= 1 n n n
P =1 > Tr[@™ (o) EL]. (92)
Ml S

We also define the average error corresponding to the ith branch of the channel as

P == 3 e[ (o) B, ©3)
Ml S
so that
M
P& = vipl. (94)
i=1

Let X be a random variable with a uniform distribution over the set M,,, characterizing
the classical message sent by Alice to Bob. Let Yi(") be the random variable corresponding to
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Bob’s inference of Alice’s message, when the codeword is transmitted through the ith branch
of the channel. It is defined by the conditional probabilities

Py = pIX" = o] = Tr [0 (o0") E"]. (95)
By Fano’s inequality,
h(p") + P log(IM,| — 1) = H(X™|Y™) = H(X™) — H(X™ : ¥"). (96)

Here K (-) denotes the binary entropy and H () denotes the Shannon entropy. Using the Holevo
bound and the subadditivity of the von Neumann entropy, we have

1 1
HX™:y") < —— Y o2 (p") ] -
( ) |M | Z l (’OOK ) |M |

S (@7 (p"))

" yem, " yem,
1 1
— S (n) S (n)
(anl a;;} a’) M| a;;ﬂ (9:)
n 1 A
< Z |:S(6i,j) ERYVA Z S (Ué,j)i|
j=1 Ml aEM,

_ZX’ <{|M |’p”}aeM,,>

—Z|M| PIRICHLHED IR c)

aeM, j=1

The expression A can be rewritten using Donald’s identity

> PaS@allp) = Y puSiaslld) + S@lIp). (98)

where @ = ), paw,. We apply this with p replaced by

- |Z 2 % ©9)

j=1aeM,

w, replaced by Uoi:,j’ Do replaced by 1/|M,,| and consequently & replaced by &; ;. Hence,

1 1 . o
|M,,| = a]”Uz J) |./\/l | Z S(Ga,jHO'i) — S(gl.’j”m)
1 A
S Ml vl $(wslor) (100)

where we have used the non-negativity of the von Neumann entropy. Inserting into (97), we
now have

1 1
—H(x™:y™) < ) = xi {— a-} ) 101
O ) < 3 S st =[] ) oo

j=1aeM,

Fano’s inequality (96) now yields

n n 1
h(p) + b loglM,| > log|M,| — ({ M, |,pa,} ) (102)
@)
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However, since

M

1

C@® = \x {M,pa,j}( i (103)
i=1 n o

and R = % log IM,,| > C(®), there must be at least one branch i such that

'?"e) >1— C@+1/n - 0. (104)
b R
We conclude from (94) and (104) that
M
C(P)+1
P> (1 - %) A (105)

i=1
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